翻訳と辞書
Words near each other
・ Eelco van Asperen
・ Eelco van Kleffens
・ Eelco Visser
・ Eelco Wassenaar
・ Eelde
・ Eelderwolde
・ Eeles Landström
・ Eelgrass
・ Eelgrass limpet
・ Eeli Erkkilä
・ Eelis Rantanen
・ Eelke Jelles Eelkema
・ Eelke Kleijn
・ Eelke van der Veen
・ Eells-Stow House
Eells–Kuiper manifold
・ Eelo University
・ Eelpout
・ Eelpout Festival
・ Eels (band)
・ Eels discography
・ Eels Lake
・ Eeltail catfish
・ Eeltsje Boates Folkertsma
・ Eeltsje Halbertsma
・ EELV
・ EELV Secondary Payload Adapter
・ Eelyn Kok
・ EEM
・ Eem


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Eells–Kuiper manifold : ウィキペディア英語版
Eells–Kuiper manifold
In mathematics, an Eells–Kuiper manifold is a compactification of R^n by an \frac - sphere, where ''n'' = 2, 4, 8, or 16. It is named after James Eells and Nicolaas Kuiper.
If ''n'' = 2, the Eells–Kuiper manifold is diffeomorphic to the real projective plane RP(2). For n\ge 4 it is simply-connected and has the integral cohomology structure of the complex projective plane CP^2 (n = 4), of the quaternionic projective plane HP^2 (n = 8) or of the Cayley projective plane (''n'' = 16).
==Properties==
These manifolds are important in both Morse theory and foliation theory:
Theorem:〔.〕 ''Let M be a connected closed manifold (not necessarily orientable) of dimension n. Suppose M admits a Morse function f:M\to R of class C^3 with exactly three singular points. Then M is a Eells–Kuiper manifold.''
Theorem:〔.〕 ''Let M^n be a compact connected manifold and F a Morse foliation on M. Suppose the number of centers c of the foliation F is more than the number of saddles s. Then there are two possibilities:''
* ''c=s+2, and M^n is homeomorphic to the sphere S^n'',
* ''c=s+1, and M^n is an Eells—Kuiper manifold, n=2,4,8 or 16.''

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Eells–Kuiper manifold」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.